Global uniqueness results for fractional order partial hyperbolic functional differential equations.
We investigate the existence and uniqueness of solutions of hyperbolic fractional order differential equations with state-dependent delay by using a nonlinear alternative of Leray-Schauder type due to Frigon and Granas for contraction maps on Fréchet spaces.
We establish the Strichartz estimates for the linear fractional beam equations in Besov spaces. Using these estimates, we obtain global well-posedness for the subcritical and critical defocusing fractional beam equations. Of course, we need to assume small initial data for the critical case. In addition, by the convexity method, we show that blow up occurs for the focusing fractional beam equations with negative energy.