Packing dimensions, transversal mappings and geodesic flows.
We present an example of a rank-one partially mixing ℤ²-action which possesses a non-rigid factor and for which the Weak Closure Theorem fails. This is in sharp contrast to one-dimensional actions, which cannot display this type of behavior.
We answer a question of H. Furstenberg on the pointwise convergence of the averages , where U and R are positive operators. We also study the pointwise convergence of the averages when T and S are measure preserving transformations.
Let T be Dunford–Schwartz operator on a probability space (Ω, μ). For f∈Lp(μ), p>1, we obtain growth conditions on ‖∑k=1nTkf‖p which imply that (1/n1/p)∑k=1nTkf→0 μ-a.e. In the particular case that p=2 and T is the isometry induced by a probability preserving transformation we get better results than in the general case; these are used to obtain a quenched central limit theorem for additive functionals of stationary ergodic Markov chains, which improves those of Derriennic–Lin and Wu–Woodroofe....
A random map is a discrete-time dynamical system in which one of a number of transformations is randomly selected and applied on each iteration of the process. We study random maps with position dependent probabilities on the interval and on a bounded domain of ℝⁿ. Sufficient conditions for the existence of an absolutely continuous invariant measure for a random map with position dependent probabilities on the interval and on a bounded domain of ℝⁿ are the main results.
We deal with a subshift of finite type and an equilibrium state μ for a Hölder continuous function. Let αⁿ be the partition into cylinders of length n. We compute (in particular we show the existence of the limit) , where is the element of the partition containing and τₙ(x) is the return time of the trajectory of x to the cylinder αⁿ(x).
In this paper we prove the following results. First, we show the existence of Wiener-Wintner dynamical system with continuous singular spectrum in the orthocomplement of their respective Kronecker factors. The second result states that if , large enough, is a Wiener-Wintner function then, for all , there exists a set of full measure for which the series converges uniformly with respect to .