The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We show that semisimple actions of l.c.s.c. Abelian groups and cocycles with values in such groups can be used to build new examples of semisimple automorphisms (ℤ-actions) which are relatively weakly mixing extensions of irrational rotations.
For every , we produce a set of integers which is -recurrent but not -recurrent. This extends a result of Furstenberg who produced a -recurrent set which is not -recurrent. We discuss a similar result for convergence of multiple ergodic averages. We also point out a combinatorial consequence related to Szemerédi’s theorem.
Via the (C,F)-construction we produce a 2-fold simple mixing transformation which has uncountably many non-trivial proper factors and all of them are prime.
For homographic extensions of the one-sided Bernoulli shift we construct σ-finite invariant and ergodic product measures. We apply the above to the description of invariant product probability measures for smooth extensions of one-sided Bernoulli shifts.
Let S and T be automorphisms of a standard Borel probability space. Some ergodic and spectral consequences of the equation ST = T²S are given for T ergodic and also when Tⁿ = I for some n>2. These ideas are used to construct examples of ergodic automorphisms S with oscillating maximal spectral multiplicity function. Other examples illustrating the theory are given, including Gaussian automorphisms having simple spectra and conjugate to their squares.
For any continuous map f: M → M on a compact manifold M, we define SRB-like (or observable) probabilities as a generalization of Sinai-Ruelle-Bowen (i.e. physical) measures. We prove that f always has observable measures, even if SRB measures do not exist. We prove that the definition of observability is optimal, provided that the purpose of the researcher is to describe the asymptotic statistics for Lebesgue almost all initial states. Precisely, the never empty set of all observable measures is...
On a manifold X of dimension at least two, let μ be a nonatomic measure of full support with μ(∂X) = 0. The Oxtoby-Ulam Theorem says that ergodicity of μ is a residual property in the group of homeomorphisms which preserve μ. Daalderop and Fokkink have recently shown that density of periodic points is residual as well. We provide a proof of their result which replaces the dependence upon the Annulus Theorem by a direct construction which assures topologically robust periodic points.
We call a sequence of measure preserving transformations strongly mixing if tends to for arbitrary measurable , . We investigate whether one can pass to a suitable subsequence such that almost surely for all (or “many”) integrable .
In this paper we describe a -dimensional generalization of the Euclidean algorithm
which stems from the dynamics of -interval exchange transformations. We investigate
various diophantine properties of the algorithm including the quality of simultaneous
approximations. We show it verifies the following Lagrange type theorem: the algorithm is
eventually periodic if and only if the parameters lie in the same quadratic extension of
We give a few examples of substitutions on infinite alphabets, and the beginning of a general theory of the associated dynamical systems. In particular, the “drunken man” substitution can be associated to an ergodic infinite measure preserving system, of Krengel entropy zero, while substitutions of constant length with a positive recurrent infinite matrix correspond to ergodic finite measure preserving systems.
We prove the absence of mixing for special flows built over (1) an irrational rotation and under a function whose Fourier coefficients are of order O(1/|n|), and (2) an irrational rotation (satisfying a diophantine condition) and under a function having a finite number of singularities of a logarithmic type. These results generalize two theorems of Kochergin.
Currently displaying 1 –
20 of
21