Page 1

Displaying 1 – 3 of 3

Showing per page

On heredity of strongly proximal actions

C. Robinson Edward Raja (2003)

Archivum Mathematicum

We prove that action of a semigroup T on compact metric space X by continuous selfmaps is strongly proximal if and only if T action on 𝒫 ( X ) is strongly proximal. As a consequence we prove that affine actions on certain compact convex subsets of finite-dimensional vector spaces are strongly proximal if and only if the action is proximal.

On the directional entropy of ℤ²-actions generated by cellular automata

M. Courbage, B. Kamiński (2002)

Studia Mathematica

We show that for any cellular automaton (CA) ℤ²-action Φ on the space of all doubly infinite sequences with values in a finite set A, determined by an automaton rule F = F [ l , r ] , l,r ∈ ℤ, l ≤ r, and any Φ-invariant Borel probability measure, the directional entropy h v ( Φ ) , v⃗= (x,y) ∈ ℝ², is bounded above by m a x ( | z l | , | z r | ) l o g A if z l z r 0 and by | z r - z l | in the opposite case, where z l = x + l y , z r = x + r y . We also show that in the class of permutative CA-actions the bounds are attained if the measure considered is uniform Bernoulli.

Currently displaying 1 – 3 of 3

Page 1