The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We present an example of a rank-one partially mixing ℤ²-action which possesses a non-rigid factor and for which the Weak Closure Theorem fails. This is in sharp contrast to one-dimensional actions, which cannot display this type of behavior.
In 1967, Ross and Stromberg published a theorem about pointwise limits of orbital integrals for the left action of a locally compact group G on (G,ρ), where ρ is the right Haar measure. We study the same kind of problem, but more generally for left actions of G on any measure space (X,μ), which leave the σ-finite measure μ relatively invariant, in the sense that sμ = Δ(s)μ for every s ∈ G, where Δ is the modular function of G. As a consequence, we also obtain a generalization of a theorem of Civin...
Currently displaying 1 –
2 of
2