Page 1

Displaying 1 – 2 of 2

Showing per page

Ergodic decomposition of quasi-invariant probability measures

Gernot Greschonig, Klaus Schmidt (2000)

Colloquium Mathematicae

The purpose of this note is to prove various versions of the ergodic decomposition theorem for probability measures on standard Borel spaces which are quasi-invariant under a Borel action of a locally compact second countable group or a discrete nonsingular equivalence relation. In the process we obtain a simultaneous ergodic decomposition of all quasi-invariant probability measures with a prescribed Radon-Nikodym derivative, analogous to classical results about decomposition of invariant probability...

Currently displaying 1 – 2 of 2

Page 1