The search session has expired. Please query the service again.
Two invertible dynamical systems (X,,μ,T) and (Y,,ν,S), where X and Y are Polish spaces and Borel probability spaces and T, S are measure preserving homeomorphisms of X and Y, are said to be finitarily orbit equivalent if there exists an invertible measure preserving mapping ϕ from a subset X₀ of X of measure one onto a subset Y₀ of Y of full measure such that
(1) is continuous in the relative topology on X₀ and is continuous in the relative topology on Y₀,
(2) for μ-a.e. x ∈ X.
(X,,μ,T) and...
For a non-compact hyperbolic surface M of finite area, we study a certain Poincaré section for the geodesic flow. The canonical, non-invertible factor of the first return map to this section is shown to be pointwise dual ergodic with return sequence (aₙ) given by
aₙ = π/(4(Area(M) + 2π)) · n/(log n).
We use this result to deduce that the section map itself is rationally ergodic, and that the geodesic flow associated to M is ergodic with respect to the Liouville measure.
...
We present an explicit formula for the Ruelle rotation of a nonsingular Killing vector field of a closed, oriented, Riemannian 3-manifold, with respect to Riemannian volume.
En théorie des groupes, le théorème de Kurosh est un résultat de structure concernant les sous-groupes d’un produit libre de groupes. Le théorème principal de cet article est un résultat analogue dans le cadre des relations d’équivalence boréliennes à classes dénombrables, que nous démontrons en développant une théorie de Bass-Serre dans ce cadre particulier.
Currently displaying 1 –
5 of
5