Page 1

Displaying 1 – 4 of 4

Showing per page

Ergodic properties of a class of discrete Abelian group extensions of rank-one transformations

Chris Dodd, Phakawa Jeasakul, Anne Jirapattanakul, Daniel M. Kane, Becky Robinson, Noah D. Stein, Cesar E. Silva (2010)

Colloquium Mathematicae

We define a class of discrete Abelian group extensions of rank-one transformations and establish necessary and sufficient conditions for these extensions to be power weakly mixing. We show that all members of this class are multiply recurrent. We then study conditions sufficient for showing that Cartesian products of transformations are conservative for a class of invertible infinite measure-preserving transformations and provide examples of these transformations.

Ergodic transforms associated to general averages

H. Aimar, A. L. Bernardis, F. J. Martín-Reyes (2010)

Studia Mathematica

Jones and Rosenblatt started the study of an ergodic transform which is analogous to the martingale transform. In this paper we present a unified treatment of the ergodic transforms associated to positive groups induced by nonsingular flows and to general means which include the usual averages, Cesàro-α averages and Abel means. We prove the boundedness in L p , 1 < p < ∞, of the maximal ergodic transforms assuming that the semigroup is Cesàro bounded in L p . For p = 1 we find that the maximal ergodic...

Ergodicity and conservativity of products of infinite transformations and their inverses

Julien Clancy, Rina Friedberg, Indraneel Kasmalkar, Isaac Loh, Tudor Pădurariu, Cesar E. Silva, Sahana Vasudevan (2016)

Colloquium Mathematicae

We construct a class of rank-one infinite measure-preserving transformations such that for each transformation T in the class, the cartesian product T × T is ergodic, but the product T × T - 1 is not. We also prove that the product of any rank-one transformation with its inverse is conservative, while there are infinite measure-preserving conservative ergodic Markov shifts whose product with their inverse is not conservative.

Exact covering maps of the circle without (weak) limit measure

Roland Zweimüller (2002)

Colloquium Mathematicae

We construct maps T on the interval and on the circle which are Lebesgue exact preserving an absolutely continuous infinite measure μ ≪ λ, such that for any probability measure ν ≪ λ the sequence ( n - 1 k = 0 n - 1 ν T - k ) n 1 of arithmetical averages of image measures does not converge weakly.

Currently displaying 1 – 4 of 4

Page 1