Page 1

Displaying 1 – 4 of 4

Showing per page

On the ergodic decomposition for a cocycle

Jean-Pierre Conze, Albert Raugi (2009)

Colloquium Mathematicae

Let (X,,μ,τ) be an ergodic dynamical system and φ be a measurable map from X to a locally compact second countable group G with left Haar measure m G . We consider the map τ φ defined on X × G by τ φ : ( x , g ) ( τ x , φ ( x ) g ) and the cocycle ( φ ) n generated by φ. Using a characterization of the ergodic invariant measures for τ φ , we give the form of the ergodic decomposition of μ ( d x ) m G ( d g ) or more generally of the τ φ -invariant measures μ χ ( d x ) χ ( g ) m G ( d g ) , where μ χ ( d x ) is χ∘φ-conformal for an exponential χ on G.

On v-positive type transformations in infinite measure

Tudor Pădurariu, Cesar E. Silva, Evangelie Zachos (2015)

Colloquium Mathematicae

For each vector v we define the notion of a v-positive type for infinite-measure-preserving transformations, a refinement of positive type as introduced by Hajian and Kakutani. We prove that a positive type transformation need not be (1,2)-positive type. We study this notion in the context of Markov shifts and multiple recurrence, and give several examples.

On weakly mixing and doubly ergodic nonsingular actions

Sarah Iams, Brian Katz, Cesar E. Silva, Brian Street, Kirsten Wickelgren (2005)

Colloquium Mathematicae

We study weak mixing and double ergodicity for nonsingular actions of locally compact Polish abelian groups. We show that if T is a nonsingular action of G, then T is weakly mixing if and only if for all cocompact subgroups A of G the action of T restricted to A is weakly mixing. We show that a doubly ergodic nonsingular action is weakly mixing and construct an infinite measure-preserving flow that is weakly mixing but not doubly ergodic. We also construct an infinite measure-preserving flow whose...

On μ-compatible metrics and measurable sensitivity

Ilya Grigoriev, Marius Cătălin Iordan, Amos Lubin, Nathaniel Ince, Cesar E. Silva (2012)

Colloquium Mathematicae

We introduce the notion of W-measurable sensitivity, which extends and strictly implies canonical measurable sensitivity, a measure-theoretic version of sensitive dependence on initial conditions. This notion also implies pairwise sensitivity with respect to a large class of metrics. We show that nonsingular ergodic and conservative dynamical systems on standard spaces must be either W-measurably sensitive, or isomorphic mod 0 to a minimal uniformly rigid isometry. In the finite measure-preserving...

Currently displaying 1 – 4 of 4

Page 1