Previous Page 2

Displaying 21 – 30 of 30

Showing per page

Rigidity of projective conjugacy for quasiperiodic flows of Koch type

Lennard F. Bakker (2008)

Colloquium Mathematicae

For quasiperiodic flows of Koch type, we exploit an algebraic rigidity of an equivalence relation on flows, called projective conjugacy, to algebraically characterize the deviations from completeness of an absolute invariant of projective conjugacy, called the multiplier group, which describes the generalized symmetries of the flow. We then describe three ways by which two quasiperiodic flows with the same Koch field are projectively conjugate when their multiplier groups are identical. The first...

Stability of higher order singular points of Poisson manifolds and Lie algebroids

Jean-Paul Dufour, Aïssa Wade (2006)

Annales de l’institut Fourier

We study the stability of singular points for smooth Poisson structures as well as general Lie algebroids. We give sufficient conditions for stability lying on the first-order approximation (not necessarily linear) of a given Poisson structure or Lie algebroid at a singular point. The main tools used here are the classical Lichnerowicz-Poisson cohomology and the deformation cohomology for Lie algebroids recently introduced by Crainic and Moerdijk. We also provide several examples of stable singular...

Strong almost reducibility for analytic and Gevrey quasi-periodic cocycles

Claire Chavaudret (2013)

Bulletin de la Société Mathématique de France

This article is about almost reducibility of quasi-periodic cocycles with a diophantine frequency which are sufficiently close to a constant. Generalizing previous works by L.H. Eliasson, we show a strong version of almost reducibility for analytic and Gevrey cocycles, that is to say, almost reducibility where the change of variables is in an analytic or Gevrey class which is independent of how close to a constant the initial cocycle is conjugated. This implies a result of density, or quasi-density,...

Sur les homéomorphismes du cercle de classe P C r par morceaux ( r 1 ) qui sont conjugués C r par morceaux aux rotations irrationnelles

Abdelhamid Adouani, Habib Marzougui (2008)

Annales de l’institut Fourier

Soit r 1 un réel. Ici, on étudie les homéomorphismes du cercle qui sont de classe P C r par morceaux et de nombres de rotation irrationnels. On caractérise ceux qui sont C r par morceaux conjugués à des C r -difféomorphismes. Comme conséquence, on obtient un critère de conjugaison...

The C 1 generic diffeomorphism has trivial centralizer

Christian Bonatti, Sylvain Crovisier, Amie Wilkinson (2009)

Publications Mathématiques de l'IHÉS

Answering a question of Smale, we prove that the space of C 1 diffeomorphisms of a compact manifold contains a residual subset of diffeomorphisms whose centralizers are trivial.

The conjugacy between Cascades generated by a weakly nonlinear system and the Euler method of a flow

Dariusz Jabłoński (2002)

Applicationes Mathematicae

Sufficient conditions for the existence of a topological conjugacy between a cascade obtained from a weakly nonlinear flow by fixing the time step and a cascade obtained by the Euler method are analysed. The aim of this paper is to provide relations between constants in the Fečkan theorem. Given such relations an implementation of a weakly nonlinear neuron is possible.

Topological conjugacy of cascades generated by gradient flows on the two-dimensional sphere

Andrzej Bielecki (2000)

Annales Polonici Mathematici

This article presents a theorem about the topological conjugacy of a gradient dynamical system with a constant time step and the cascade generated by its Euler method. It is shown that on the two-dimensional sphere S² the gradient dynamical flow is, under some natural assumptions, correctly reproduced by the Euler method for a sufficiently small time step. This means that the time-map of the induced dynamical system is globally topologically conjugate to the discrete dynamical system obtained via...

Currently displaying 21 – 30 of 30

Previous Page 2