Reversibility in the diffeomorphism group of the real line.
Using the description of non solvable dynamics by Nakai, we give in this paper a new proof of the rigidity properties of some sub-groups of Diff(C, O). The Cinfinity case is also considered here.
For quasiperiodic flows of Koch type, we exploit an algebraic rigidity of an equivalence relation on flows, called projective conjugacy, to algebraically characterize the deviations from completeness of an absolute invariant of projective conjugacy, called the multiplier group, which describes the generalized symmetries of the flow. We then describe three ways by which two quasiperiodic flows with the same Koch field are projectively conjugate when their multiplier groups are identical. The first...
We prove the C¹-density of every -conjugacy class in the closed subset of diffeomorphisms of the circle with a given irrational rotation number.
We study the stability of singular points for smooth Poisson structures as well as general Lie algebroids. We give sufficient conditions for stability lying on the first-order approximation (not necessarily linear) of a given Poisson structure or Lie algebroid at a singular point. The main tools used here are the classical Lichnerowicz-Poisson cohomology and the deformation cohomology for Lie algebroids recently introduced by Crainic and Moerdijk. We also provide several examples of stable singular...
This article is about almost reducibility of quasi-periodic cocycles with a diophantine frequency which are sufficiently close to a constant. Generalizing previous works by L.H. Eliasson, we show a strong version of almost reducibility for analytic and Gevrey cocycles, that is to say, almost reducibility where the change of variables is in an analytic or Gevrey class which is independent of how close to a constant the initial cocycle is conjugated. This implies a result of density, or quasi-density,...
Soit un réel. Ici, on étudie les homéomorphismes du cercle qui sont de classe par morceaux et de nombres de rotation irrationnels. On caractérise ceux qui sont par morceaux conjugués à des -difféomorphismes. Comme conséquence, on obtient un critère de conjugaison...
Answering a question of Smale, we prove that the space of C 1 diffeomorphisms of a compact manifold contains a residual subset of diffeomorphisms whose centralizers are trivial.
Sufficient conditions for the existence of a topological conjugacy between a cascade obtained from a weakly nonlinear flow by fixing the time step and a cascade obtained by the Euler method are analysed. The aim of this paper is to provide relations between constants in the Fečkan theorem. Given such relations an implementation of a weakly nonlinear neuron is possible.
This article presents a theorem about the topological conjugacy of a gradient dynamical system with a constant time step and the cascade generated by its Euler method. It is shown that on the two-dimensional sphere S² the gradient dynamical flow is, under some natural assumptions, correctly reproduced by the Euler method for a sufficiently small time step. This means that the time-map of the induced dynamical system is globally topologically conjugate to the discrete dynamical system obtained via...