Page 1

Displaying 1 – 6 of 6

Showing per page

A counterexample to smooth leafwise Hodge decomposition for general foliations and to a type of dynamical trace formulas

Christopher Deninger, Wilhelm Singhof (2001)

Annales de l’institut Fourier

We construct a two dimensional foliation with dense leaves on the Heisenberg nilmanifold for which smooth leafwise Hodge decomposition does not hold. It is also shown that a certain type of dynamical trace formulas relating periodic orbits with traces on leafwise cohomologies does not hold for arbitrary flows.

An L q ( L ² ) -theory of the generalized Stokes resolvent system in infinite cylinders

Reinhard Farwig, Myong-Hwan Ri (2007)

Studia Mathematica

Estimates of the generalized Stokes resolvent system, i.e. with prescribed divergence, in an infinite cylinder Ω = Σ × ℝ with Σ n - 1 , a bounded domain of class C 1 , 1 , are obtained in the space L q ( ; L ² ( Σ ) ) , q ∈ (1,∞). As a preparation, spectral decompositions of vector-valued homogeneous Sobolev spaces are studied. The main theorem is proved using the techniques of Schauder decompositions, operator-valued multiplier functions and R-boundedness of operator families.

An ordered structure of rank two related to Dulac's Problem

A. Dolich, P. Speissegger (2008)

Fundamenta Mathematicae

For a vector field ξ on ℝ² we construct, under certain assumptions on ξ, an ordered model-theoretic structure associated to the flow of ξ. We do this in such a way that the set of all limit cycles of ξ is represented by a definable set. This allows us to give two restatements of Dulac’s Problem for ξ - that is, the question whether ξ has finitely many limit cycles-in model-theoretic terms, one involving the recently developed notion of U þ -rank and the other involving the notion of o-minimality.

Currently displaying 1 – 6 of 6

Page 1