Page 1

Displaying 1 – 5 of 5

Showing per page

Characterization of ω -limit sets of continuous maps of the circle

David Pokluda (2002)

Commentationes Mathematicae Universitatis Carolinae

In this paper we extend results of Blokh, Bruckner, Humke and Sm’ıtal [Trans. Amer. Math. Soc. 348 (1996), 1357–1372] about characterization of ω -limit sets from the class 𝒞 ( I , I ) of continuous maps of the interval to the class 𝒞 ( 𝕊 , 𝕊 ) of continuous maps of the circle. Among others we give geometric characterization of ω -limit sets and then we prove that the family of ω -limit sets is closed with respect to the Hausdorff metric.

Codages de rotations et phénomènes d'autosimilarité

Boris Adamczewski (2002)

Journal de théorie des nombres de Bordeaux

Nous étudions une classe de suites symboliques, les codages de rotations, intervenant dans des problèmes de répartition des suites ( n α ) n et représentant une généralisation géométrique des suites sturmiennes. Nous montrons que ces suites peuvent être obtenues par itération de quatre substitutions définies sur un alphabet à trois lettres, puis en appliquant un morphisme de projection. L’ordre d’itération de ces applications est gouverné par un développement bi-dimensionnel de type “fraction continue”...

Combinatorics of distance doubling maps

Karsten Keller, Steffen Winter (2005)

Fundamenta Mathematicae

We study the combinatorics of distance doubling maps on the circle ℝ/ℤ with prototypes h(β) = 2β mod 1 and h̅(β) = -2β mod 1, representing the orientation preserving and orientation reversing case, respectively. In particular, we identify parts of the circle where the iterates f n of a distance doubling map f exhibit “distance doubling behavior”. The results include well known statements for h related to the structure of the Mandelbrot set M. For h̅ they suggest some analogies to the structure of...

Currently displaying 1 – 5 of 5

Page 1