Page 1

Displaying 1 – 4 of 4

Showing per page

General construction of non-dense disjoint iteration groups on the circle

Krzysztof Ciepliński (2005)

Czechoslovak Mathematical Journal

Let = { F v 𝕊 1 𝕊 1 , v V } be a disjoint iteration group on the unit circle 𝕊 1 , that is a family of homeomorphisms such that F v 1 F v 2 = F v 1 + v 2 for v 1 , v 2 V and each F v either is the identity mapping or has no fixed point ( ( V , + ) is a 2 -divisible nontrivial Abelian group). Denote by L the set of all cluster points of { F v ( z ) , v V } for z 𝕊 1 . In this paper we give a general construction of disjoint iteration groups for which L 𝕊 1 .

Geometric rigidity of × m invariant measures

Michael Hochman (2012)

Journal of the European Mathematical Society

Let μ be a probability measure on [ 0 , 1 ] which is invariant and ergodic for T a ( x ) = a x 𝚖𝚘𝚍 1 , and 0 < 𝚍𝚒𝚖 μ < 1 . Let f be a local diffeomorphism on some open set. We show that if E and ( f μ ) E μ E , then f ' ( x ) ± a r : r at μ -a.e. point x f - 1 E . In particular, if g is a piecewise-analytic map preserving μ then there is an open g -invariant set U containing supp μ such that g U is piecewise-linear with slopes which are rational powers of a . In a similar vein, for μ as above, if b is another integer and a , b are not powers of a common integer, and if ν is a T b -invariant...

Groups of real analytic diffeomorphisms of the circle with a finite image under the rotation number function

Yoshifumi Matsuda (2009)

Annales de l’institut Fourier

We consider groups of orientation-preserving real analytic diffeomorphisms of the circle which have a finite image under the rotation number function. We show that if such a group is nondiscrete with respect to the C 1 -topology then it has a finite orbit. As a corollary, we show that if such a group has no finite orbit then each of its subgroups contains either a cyclic subgroup of finite index or a nonabelian free subgroup.

Currently displaying 1 – 4 of 4

Page 1