Page 1

Displaying 1 – 11 of 11

Showing per page

Smooth Extensions of Bernoulli Shifts

Zbigniew S. Kowalski (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

For homographic extensions of the one-sided Bernoulli shift we construct σ-finite invariant and ergodic product measures. We apply the above to the description of invariant product probability measures for smooth extensions of one-sided Bernoulli shifts.

Stochastic dynamical systems with weak contractivity properties II. Iteration of Lipschitz mappings

Marc Peigné, Wolfgang Woess (2011)

Colloquium Mathematicae

In this continuation of the preceding paper (Part I), we consider a sequence ( F ) n 0 of i.i.d. random Lipschitz mappings → , where is a proper metric space. We investigate existence and uniqueness of invariant measures, as well as recurrence and ergodicity of the induced stochastic dynamical system (SDS) X x = F . . . F ( x ) starting at x ∈ . The main results concern the case when the associated Lipschitz constants are log-centered. Principal tools are local contractivity, as considered in detail in Part I, the Chacon-Ornstein...

Stochastic dynamical systems with weak contractivity properties I. Strong and local contractivity

Marc Peigné, Wolfgang Woess (2011)

Colloquium Mathematicae

Consider a proper metric space and a sequence ( F ) n 0 of i.i.d. random continuous mappings → . It induces the stochastic dynamical system (SDS) X x = F . . . F ( x ) starting at x ∈ . In this and the subsequent paper, we study existence and uniqueness of invariant measures, as well as recurrence and ergodicity of this process. In the present first part, we elaborate, improve and complete the unpublished work of Martin Benda on local contractivity, which merits publicity and provides an important tool for studying stochastic...

Currently displaying 1 – 11 of 11

Page 1