The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For a class of random dynamical systems which describe dissipative nonlinear PDEs perturbed by a bounded random kick-force, I propose a “direct proof” of the uniqueness of the stationary measure and exponential convergence of solutions to this measure, by showing that the transfer-operator, acting in the space of probability measures given the Kantorovich metric, defines a contraction of this space.
This paper deals with some characterizations of gradient-like continuous random dynamical systems (RDS). More precisely, we establish an equivalence with the existence of random continuous section or with the existence of continuous and strict Liapunov function. However and contrary to the deterministic case, parallelizable RDS appear as a particular case of gradient-like RDS.The obtained results are generalizations of well-known analogous theorems in the framework of deterministic dynamical systems....
Consider a stochastic heat equation ∂tu=κ
∂xx2u+σ(u)ẇ for a space–time white noise ẇ and a constant κ>0. Under some suitable conditions on the initial function u0 and σ, we show that the quantities lim sup t→∞t−1sup x∈Rln El(|ut(x)|2) and lim sup t→∞t−1ln E(sup x∈R|ut(x)|2) are equal, as well as bounded away from zero and infinity by explicit multiples of 1/κ. Our proof works by demonstrating quantitatively that the peaks of the stochastic process x↦ut(x) are highly concentrated...
This paper is devoted to the helices processes, i.e. the solutions
H : ℝ × Ω → ℝd, (t, ω) ↦ H(t, ω)
of the helix equation where Φ :
ℝ × Ω → Ω, (t, ω) ↦ Φ(t, ω)
is a dynamical system on a measurable space (Ω, ℱ).More precisely, we investigate dominated solutions and non differentiable solutions of the helix equation.
For the last case, the Wiener helix plays a fundamental role. Moreover, some relations
with the cocycle equation defined...
In this article we prove new results concerning the structure and the stability properties of the global attractor associated with a class of nonlinear parabolic stochastic partial differential equations driven by a standard multidimensional brownian motion. We first use monotonicity methods to prove that the random fields either stabilize exponentially rapidly with probability one around one of the two equilibrium states, or that they set out to oscillate between them. In the first case we can...
In this article we prove new results concerning the
structure and the stability properties of the global attractor associated
with a class of nonlinear parabolic stochastic partial differential equations
driven by a standard multidimensional Brownian motion.
We first use monotonicity methods
to prove that the random fields either stabilize exponentially rapidly with
probability one around one of the two equilibrium states, or that they set out
to oscillate between them. In the first case we can...
Currently displaying 1 –
6 of
6