Herman’s last geometric theorem
We present a proof of Herman’s Last Geometric Theorem asserting that if is a smooth diffeomorphism of the annulus having the intersection property, then any given -invariant smooth curve on which the rotation number of is Diophantine is accumulated by a positive measure set of smooth invariant curves on which is smoothly conjugated to rotation maps. This implies in particular that a Diophantine elliptic fixed point of an area preserving diffeomorphism of the plane is stable. The remarkable...