The search session has expired. Please query the service again.
We study infinite translation surfaces which are -covers of compact translation surfaces. We obtain conditions ensuring that such surfaces have Veech groups which are Fuchsian of the first kind and give a necessary and sufficient condition for recurrence of their straight-line flows. Extending results of Hubert and Schmithüsen, we provide examples of infinite non-arithmetic lattice surfaces, as well as surfaces with infinitely generated Veech groups.
In this paper, we consider C1,1 Hamiltonian systems. We prove the existence of a first derivative of the flow with respect to initial values and show that it satisfies the symplecticity condition almost everywhere in the phase-space. In a second step, we present a geometric integrator for such systems (called the SDH method) based on B-splines interpolation and a splitting method introduced by McLachlan and Quispel [Appl. Numer. Math. 45 (2003) 411–418], and we prove it is convergent, and that...
Currently displaying 1 –
2 of
2