Page 1

Displaying 1 – 6 of 6

Showing per page

Density estimation for one-dimensional dynamical systems

Clémentine Prieur (2001)

ESAIM: Probability and Statistics

In this paper we prove a Central Limit Theorem for standard kernel estimates of the invariant density of one-dimensional dynamical systems. The two main steps of the proof of this theorem are the following: the study of rate of convergence for the variance of the estimator and a variation on the Lindeberg–Rio method. We also give an extension in the case of weakly dependent sequences in a sense introduced by Doukhan and Louhichi.

Density Estimation for One-Dimensional Dynamical Systems

Clémentine Prieur (2010)

ESAIM: Probability and Statistics

In this paper we prove a Central Limit Theorem for standard kernel estimates of the invariant density of one-dimensional dynamical systems. The two main steps of the proof of this theorem are the following: the study of rate of convergence for the variance of the estimator and a variation on the Lindeberg–Rio method. We also give an extension in the case of weakly dependent sequences in a sense introduced by Doukhan and Louhichi.

Determination of phase-space reconstruction parameters of chaotic time series

Wei-Dong Cai, Yi-Qing Qin, Bing Ru Yang (2008)

Kybernetika

A new method called C-C-1 method is suggested, which can improve some drawbacks of the original C-C method. Based on the theory of period N, a new quantity S(t) for estimating the delay time window of a chaotic time series is given via direct computing a time-series quantity S(m,N,r,t), from which the delay time window can be found. The optimal delay time window is taken as the first period of the chaotic time series with a local minimum of S(t). Only the first local minimum of the average of a...

Discrete anisotropic curvature flow of graphs

Klaus Deckelnick, Gerhard Dziuk (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The evolution of n–dimensional graphs under a weighted curvature flow is approximated by linear finite elements. We obtain optimal error bounds for the normals and the normal velocities of the surfaces in natural norms. Furthermore we prove a global existence result for the continuous problem and present some examples of computed surfaces.

Currently displaying 1 – 6 of 6

Page 1