### $\mathcal{O}\left(\ell \right)$ shift in Hopf bifurcations for a class of nonstandard numerical schemes.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

In this paper, we investigate Egoroff’s theorem with respect to monotone set function, and show that a necessary and sufficient condition that Egoroff’s theorem remain valid for monotone set function is that the monotone set function fulfill condition (E). Therefore Egoroff’s theorem for non-additive measure is formulated in full generality.

In this article there is proposed a new two-parametrical variant of the gravitational classification method. We use the general idea of objects' behavior in a gravity field. Classification depends on a test object's motion in a gravity field of training points. To solve this motion problem, we use a simulation method. This classifier is compared to the 1NN method, because our method tends towards it for some parameter values. Experimental results on different data sets demonstrate an improvement...

Following the $\Gamma $-convergence approach introduced by Müller and Ortiz, the convergence of discrete dynamics for lagrangians with quadratic behavior is established.

Following the Γ-convergence approach introduced by Müller and Ortiz, the convergence of discrete dynamics for Lagrangians with quadratic behavior is established.

Given a measure-preserving transformation T of a probability space (X,ℬ,μ) and a finite measurable partition ℙ of X, we show how to construct an Alpern tower of any height whose base is independent of the partition ℙ. That is, given N ∈ ℕ, there exists a Rokhlin tower of height N, with base B and error set E, such that B is independent of ℙ, and TE ⊂ B.

In [C.W. Gear, T.J. Kaper, I.G. Kevrekidis and A. Zagaris, SIAM J. Appl. Dyn. Syst. 4 (2005) 711–732], we developed a class of iterative algorithms within the context of equation-free methods to approximate low-dimensional, attracting, slow manifolds in systems of differential equations with multiple time scales. For user-specified values of a finite number of the observables, the mth member of the class of algorithms ($m=0,1,...$) finds iteratively an approximation of the appropriate zero of the (m+1)st...

En los últimos tiempos se ha comprobado un aumento del interés en la aplicación de las Redes Neuronales Artificiales a la previsión de series temporales, intentando explotar las indudables ventajas de estas herramientas. En este artículo se calculan previsiones de series no estacionarias o no invertibles, que presentan dificultades cuando se intentan pronosticar utilizando la metodología ARIMA de Box-Jenkins. Las ventajas de la aplicación de redes neuronales se aprecian con más claridad, cuando...

A synthesis of recent development of regime-switching models based on aggregation operators is presented. It comprises procedures for model specification and identification, parameter estimation and model adequacy testing. Constructions of models for real life data from hydrology and finance are presented.

The aim of this short note is to study the behavior of the weighted empirical measures of the decreasing step Euler scheme of a one-dimensional diffusion process having multiple invariant measures. This situation can occur when the drift and the diffusion coefficient are vanish simultaneously.