Page 1

Displaying 1 – 4 of 4

Showing per page

Optimal stability and instability results for a class of nearly integrable Hamiltonian systems

Massimiliano Berti, Luca Biasco, Philippe Bolle (2002)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We consider nearly integrable, non-isochronous, a-priori unstable Hamiltonian systems with a (trigonometric polynomial) O µ -perturbation which does not preserve the unperturbed tori. We prove the existence of Arnold diffusion with diffusion time T d = O 1 / μ log 1 / μ by a variational method which does not require the existence of «transition chains of tori» provided by KAM theory. We also prove that our estimate of the diffusion time T d is optimal as a consequence of a general stability result proved via classical perturbation...

Currently displaying 1 – 4 of 4

Page 1