Displaying 21 – 40 of 45

Showing per page

Una classe di soluzioni con zeri dell'equazione funzionale di Aleksandrov.

Constanza Borelli Forti (1992)

Stochastica

In this paper we consider the Aleksandrov equation f(L + x) = f(L) + f(x) where L is contained in Rn and f: L --> R and we describe the class of solutions bounded from below, with zeros and assuming on the boundary of the set of zeros only values multiple of a fixed a > 0. This class is the natural generalization of that described by Aleksandrov itself in the one-dimensional case.

Unbounded Jacobi Matrices with Empty Absolutely Continuous Spectrum

Petru Cojuhari, Jan Janas (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Sufficient conditions for the absence of absolutely continuous spectrum for unbounded Jacobi operators are given. A class of unbounded Jacobi operators with purely singular continuous spectrum is constructed as well.

Unboundedness results for systems

Gabriel Lugo, Frank Palladino (2009)

Open Mathematics

We study k th order systems of two rational difference equations x n = α + i = 1 k β i x n - i + i = 1 k γ i y n - i A + j = 1 k B j x n - j + j = 1 k C j y n - j , n , In particular we assume non-negative parameters and non-negative initial conditions. We develop several approaches which allow us to prove that unbounded solutions exist for certain initial conditions in a range of the parameters.

Une famille de distributions : des paretiennes aux «contra-paretiennes». Applications à l'étude de la concentration urbaine et de son évolution

Marc Barbut (1998)

Mathématiques et Sciences Humaines

Ce texte est consacré à une famille de distributions statistiques — qui comprend les distributions de V. Pareto, celles du type exponentiel et celles que l'on appellera ici «contra-paretiennes» (ou «anti-paretiennes») — dont l'unité tient à ce qu'elles vérifient toutes une même relation fonctionnelle. Celle-ci est d'ailleurs interprétable en termes d'inégalité des distributions ; elle fournit en outre une méthode simple et efficace d'ajustement des distributions de la famille à des «données» observées....

Uniqueness of entire functions concerning difference polynomials

Chao Meng (2014)

Mathematica Bohemica

In this paper, we investigate the uniqueness problem of difference polynomials sharing a small function. With the notions of weakly weighted sharing and relaxed weighted sharing we prove the following: Let f ( z ) and g ( z ) be two transcendental entire functions of finite order, and α ( z ) a small function with respect to both f ( z ) and g ( z ) . Suppose that c is a non-zero complex constant and n 7 (or n 10 ) is an integer. If f n ( z ) ( f ( z ) - 1 ) f ( z + c ) and g n ( z ) ( g ( z ) - 1 ) g ( z + c ) share “ ( α ( z ) , 2 ) ” (or ( α ( z ) , 2 ) * ), then f ( z ) g ( z ) . Our results extend and generalize some well known previous results....

Currently displaying 21 – 40 of 45