Über Iteration ohne Regularitätsbedingungen im Ring der formalen Potenzreihen in einer Variablen.
In this paper we consider the Aleksandrov equation f(L + x) = f(L) + f(x) where L is contained in Rn and f: L --> R and we describe the class of solutions bounded from below, with zeros and assuming on the boundary of the set of zeros only values multiple of a fixed a > 0. This class is the natural generalization of that described by Aleksandrov itself in the one-dimensional case.
Sufficient conditions for the absence of absolutely continuous spectrum for unbounded Jacobi operators are given. A class of unbounded Jacobi operators with purely singular continuous spectrum is constructed as well.
We investigate the boundedness nature of positive solutions of the difference equation where A nn=0∞ and B nn=0∞ are periodic sequences of positive real numbers.
We study k th order systems of two rational difference equations In particular we assume non-negative parameters and non-negative initial conditions. We develop several approaches which allow us to prove that unbounded solutions exist for certain initial conditions in a range of the parameters.
Ce texte est consacré à une famille de distributions statistiques — qui comprend les distributions de V. Pareto, celles du type exponentiel et celles que l'on appellera ici «contra-paretiennes» (ou «anti-paretiennes») — dont l'unité tient à ce qu'elles vérifient toutes une même relation fonctionnelle. Celle-ci est d'ailleurs interprétable en termes d'inégalité des distributions ; elle fournit en outre une méthode simple et efficace d'ajustement des distributions de la famille à des «données» observées....
In this paper, we investigate the uniqueness problem of difference polynomials sharing a small function. With the notions of weakly weighted sharing and relaxed weighted sharing we prove the following: Let and be two transcendental entire functions of finite order, and a small function with respect to both and . Suppose that is a non-zero complex constant and (or ) is an integer. If and share “” (or ), then . Our results extend and generalize some well known previous results....