Multiple positive solutions in the sense of distributions of singular BVPs on time scales and an application to Emden-Fowler equations.
It is proved that the solution of the multiplicative Cauchy functional equation on the Lorentz cone of dimension greater than two is a power function of the determinant. The equation is solved in full generality, i.e. no smoothness assumptions on the unknown function are imposed. Also the functional equation of ratios, of a similar nature, is solved in full generality.
We solve the multiplicative Cauchy equation for real functions of symmetric positive definite matrices under the differentiability restriction. The specialty of the problem lies in the symmetry of the multiplication.
The paper deals with a class of discrete fractional boundary value problems. We construct the corresponding Green's function, analyse it in detail and establish several of its key properties. Then, by using the fixed point index theory, the existence of multiple positive solutions is obtained, and the uniqueness of the solution is proved by a new theorem on an ordered metric space established by M. Jleli, et al. (2012).
In this work we establish existence results for solutions to multipoint boundary value problems for second order difference equations with fully nonlinear boundary conditions involving two, three and four points. Our results are also applied to systems.
Nous introduisons une version -analogue du procédé d’accélération élémentaire d’Écalle-Martinet-Ramis et définissons la notion de série entière -multisommable. Nous montrons que toute série entière solution formelle d’une équation aux -différences linéaire analytique est -multisommable.
This paper concerns difference equations where takes values in and is meromorphic in in a neighborhood of in and holomorphic in a neighborhood of 0 in . It is shown that under certain conditions on the linear part of , formal power series solutions in are multisummable. Moreover, it is shown that formal solutions may always be lifted to holomorphic solutions in upper and lower halfplanes, but in general these solutions are not uniquely determined by the formal solutions.