Displaying 141 – 160 of 202

Showing per page

Periodic solutions of a class of third-order differential equations with two delays depending on time and state

Rabah Khemis, Abdelouaheb Ardjouni, Ahlème Bouakkaz, Ahcene Djoudi (2019)

Commentationes Mathematicae Universitatis Carolinae

The goal of the present paper is to establish some new results on the existence, uniqueness and stability of periodic solutions for a class of third order functional differential equations with state and time-varying delays. By Krasnoselskii's fixed point theorem, we prove the existence of periodic solutions and under certain sufficient conditions, the Banach contraction principle ensures the uniqueness of this solution. The results obtained in this paper are illustrated by an example.

Probability distribution solutions of a general linear equation of infinite order

Tomasz Kochanek, Janusz Morawiec (2009)

Annales Polonici Mathematici

Let (Ω,,P) be a probability space and let τ: ℝ × Ω → ℝ be strictly increasing and continuous with respect to the first variable, and -measurable with respect to the second variable. We obtain a partial characterization and a uniqueness-type result for solutions of the general linear equation F ( x ) = Ω F ( τ ( x , ω ) ) P ( d ω ) in the class of probability distribution functions.

Probability distribution solutions of a general linear equation of infinite order, II

Tomasz Kochanek, Janusz Morawiec (2010)

Annales Polonici Mathematici

Let (Ω,,P) be a probability space and let τ: ℝ × Ω → ℝ be a mapping strictly increasing and continuous with respect to the first variable, and -measurable with respect to the second variable. We discuss the problem of existence of probability distribution solutions of the general linear equation F ( x ) = Ω F ( τ ( x , ω ) ) P ( d ω ) . We extend our uniqueness-type theorems obtained in Ann. Polon. Math. 95 (2009), 103-114.

Prolongement analytique et systèmes dynamiques discrets.

Augustin Fruchard (1992)

Collectanea Mathematica

We present a new method of analytic continuation of series out of their disk of convergence. We then exhibit a connection with the phenomenon of bifurcation delay in a planar discrete dynamical system; the limit of the method is then related to a stop phenomenon.

Refinement type equations: sources and results

Rafał Kapica, Janusz Morawiec (2013)

Banach Center Publications

It has been proved recently that the two-direction refinement equation of the form f ( x ) = n c n , 1 f ( k x - n ) + n c n , - 1 f ( - k x - n ) can be used in wavelet theory for constructing two-direction wavelets, biorthogonal wavelets, wavelet packages, wavelet frames and others. The two-direction refinement equation generalizes the classical refinement equation f ( x ) = n c f ( k x - n ) , which has been used in many areas of mathematics with important applications. The following continuous extension of the classical refinement equation f ( x ) = c ( y ) f ( k x - y ) d y has also various interesting applications....

Regular fractional iteration of convex functions

Marek Kuczma (1980)

Annales Polonici Mathematici

The existence of a unique C 1 solution φ of equation (1) is proved under the condition that f: I → I is convex or concave and of class C 1 in I, 0 < f(x) < x in I*, and f’(x) > 0 in I. Here I = [0, a] or [0, a), 0 < a ≤ ∞, and I* = I 0.

Solutions for the p-order Feigenbaum’s functional equation h ( g ( x ) ) = g p ( h ( x ) )

Min Zhang, Jianguo Si (2014)

Annales Polonici Mathematici

This work deals with Feigenbaum’s functional equation ⎧ h ( g ( x ) ) = g p ( h ( x ) ) , ⎨ ⎩ g(0) = 1, -1 ≤ g(x) ≤ 1, x∈[-1,1] where p ≥ 2 is an integer, g p is the p-fold iteration of g, and h is a strictly monotone odd continuous function on [-1,1] with h(0) = 0 and |h(x)| < |x| (x ∈ [-1,1], x ≠ 0). Using a constructive method, we discuss the existence of continuous unimodal even solutions of the above equation.

Solutions with big graph of iterative functional equations of the first order

Lech Bartłomiejczyk (1999)

Colloquium Mathematicae

We obtain a result on the existence of a solution with big graph of functional equations of the form g(x,𝜑(x),𝜑(f(x)))=0 and we show that it is applicable to some important equations, both linear and nonlinear, including those of Abel, Böttcher and Schröder. The graph of such a solution 𝜑 has some strange properties: it is dense and connected, has full outer measure and is topologically big.

Currently displaying 141 – 160 of 202