The solutions of the series-like iterative equation with variable coefficients.
We consider the functional equation where is a given increasing homeomorphism of an open interval and is an unknown continuous function. In a series of papers by P. Kahlig and J. Smítal it was proved that the range of any non-constant solution is an interval whose end-points are fixed under and which contains in its interior no fixed point except for . They also provide a characterization of the class of monotone solutions and prove a necessary and sufficient condition for any solution...
We consider the functional equation where is a given homeomorphism of an open interval and is an unknown continuous function. A characterization of the class of continuous solutions is given in a series of papers by Kahlig and Smítal 1998–2002, and in a recent paper by Reich et al. 2004, in the case when is increasing. In the present paper we solve the converse problem, for which continuous maps , where is an interval, there is an increasing homeomorphism of such that . We...
We deal with the linear functional equation (E) , where g:(0,∞) → (0,∞) is unknown, is a probability distribution, and ’s are positive numbers. The equation (or some equivalent forms) was considered earlier under different assumptions (cf. [1], [2], [4], [5] and [6]). Using Bernoulli’s Law of Large Numbers we prove that g has to be constant provided it has a limit at one end of the domain and is bounded at the other end.
Let (Ω,,P) be a probability space and let τ: ℝ×Ω → ℝ be a function which is strictly increasing and continuous with respect to the first variable, measurable with respect to the second variable. Given the set of all continuous probability distribution solutions of the equation we determine the set of all its probability distribution solutions.
A sufficient condition for the asymptotic stability of Markov operators acting on measures defined on Polish spaces is presented.
The aim of the paper is to investigate the structure of disjoint iteration groups on the unit circle , that is, families of homeomorphisms such that and each either is the identity mapping or has no fixed point ( is an arbitrary -divisible nontrivial (i.e., ) abelian group).
We propose stochastic versions of some theorems of W. J. Thron [14] on the speed of convergence of iterates for random-valued functions on cones in Banach spaces.
We give large classes of solutions of the translation equation on a monoid satisfying the identity condition.