D'Alembert's equation and spherical functions.
Given a (not necessarily unitary) character μ:G → (ℂ∖0,·) of a group G we find the solutions g: G → ℂ of the following version of d’Alembert’s functional equation , x,y ∈ G. (*) The classical equation is the case of μ = 1 and G = ℝ. The non-zero solutions of (*) are the normalized traces of certain representations of G on ℂ². Davison proved this via his work [20] on the pre-d’Alembert functional equation on monoids. The present paper presents a detailed exposition of these results working directly...
In the paper [3] the determinant criterion of solvability for the Kuczma equation [4] was given. This criterion appeared in the natural way as barycenter of some mass system. It turned out that determinants do appear in many different situations as solvability criteria. The present article is aimed to review the mostly classical results in the theory of functional equations from this point of view. We begin with classical results of the linear functional equations and the determinant equations solved...