Sesquilinear-orthogonally quadratic mappings.
Some functional equations involving means of associative functions are investigated.
In 1940 S. M. Ulam (Intersci. Publ., Inc., New York 1960) imposed at the University of Wisconsin the problem: “Give conditions in order for a linear mapping near an approximately linear mapping to exist”. According to P. M. Gruber (Trans. Amer. Math. Soc. 245 (1978), 263–277) the afore-mentioned problem of S. M. Ulam belongs to the following general problem or Ulam type problem: “Suppose a mathematical object satisfies a certain property approximately. Is it then possible to approximate this objects...
We are investigating quasigroup functional equation classification up to parastrophic equivalence [Sokhatsky F.M.: On classification of functional equations on quasigroups, Ukrainian Math. J. 56 (2004), no. 4, 1259–1266 (in Ukrainian)]. If functional equations are parastrophically equivalent, then their functional variables can be renamed in such a way that the obtained equations are equivalent, i.e., their solution sets are equal. There exist five classes of generalized distributive-like quasigroup...
Let be a group and an abelian group. Let be the set of solutions of the Jensen functional equation satisfying the condition for all . Let be the set of solutions of the quadratic equation satisfying the Kannappan condition for all . In this paper we determine solutions of the Whitehead equation on groups. We show that every solution of the Whitehead equation is of the form , where and . Moreover, if has the additional property that implies for all , then every...
We obtain a result on the existence of a solution with big graph of functional equations of the form g(x,𝜑(x),𝜑(f(x)))=0 and we show that it is applicable to some important equations, both linear and nonlinear, including those of Abel, Böttcher and Schröder. The graph of such a solution 𝜑 has some strange properties: it is dense and connected, has full outer measure and is topologically big.
Let X be a reflexive Banach space and (Ω,,μ) be a probability measure space. Let T: M(μ;X) → M(μ;X) be a linear operator, where M(μ;X) is the space of all X-valued strongly measurable functions on (Ω,,μ). We assume that T is continuous in the sense that if (fₙ) is a sequence in M(μ;X) and in measure for some f ∈ M(μ;X), then also in measure. Then we consider the functional equation f = (T-I)h, where f ∈ M(μ;X) is given. We obtain several conditions for the existence of h ∈ M(μ;X) satisfying...
In the present paper some complex vector functional equations of higher order without parameters and with complex parameters are solved.