Displaying 21 – 40 of 114

Showing per page

An existence and stability theorem for a class of functional equations.

Gian Luigi Forti (1980)

Stochastica

Consider the class of functional equationsg[F(x,y)] = H[g(x),g(y)],where g: E --> X, f: E x E --> E, H: X x X --> X, E is a set and (X,d) is a complete metric space. In this paper we prove that, under suitable hypotheses on F, H and ∂(x,y), the existence of a solution of the functional inequalityd(f[F(x,y)],H[f(x),f(y)]) ≤ ∂(x,y),implies the existence of a solution of the above equation.

Convex-like inequality, homogeneity, subadditivity, and a characterization of L p -norm

Janusz Matkowski, Marek Pycia (1995)

Annales Polonici Mathematici

Let a and b be fixed real numbers such that 0 < mina,b < 1 < a + b. We prove that every function f:(0,∞) → ℝ satisfying f(as + bt) ≤ af(s) + bf(t), s,t > 0, and such that l i m s u p t 0 + f ( t ) 0 must be of the form f(t) = f(1)t, t > 0. This improves an earlier result in [5] where, in particular, f is assumed to be nonnegative. Some generalizations for functions defined on cones in linear spaces are given. We apply these results to give a new characterization of the L p -norm.

Currently displaying 21 – 40 of 114