Displaying 81 – 100 of 114

Showing per page

On the uniqueness of continuous solutions of functional equations

Bolesław Gaweł (1995)

Annales Polonici Mathematici

We consider the problem of the vanishing of non-negative continuous solutions ψ of the functional inequalities (1)   ψ(f(x)) ≤ β(x,ψ(x)) and (2)   α(x,ψ(x)) ≤ ψ(f(x)) ≤ β(x,ψ(x)), where x varies in a fixed real interval I. As a consequence we obtain some results on the uniqueness of continuous solutions φ :I → Y of the equation (3)  φ(f(x)) = g(x,φ(x)), where Y denotes an arbitrary metric space.

Polynomial selections and separation by polynomials

Szymon Wąsowicz (1996)

Studia Mathematica

K. Nikodem and the present author proved in [3] a theorem concerning separation by affine functions. Our purpose is to generalize that result for polynomials. As a consequence we obtain two theorems on separation of an n-convex function from an n-concave function by a polynomial of degree at most n and a stability result of Hyers-Ulam type for polynomials.

Relative rearrangement and interpolation inequalities.

J. Michel Rakotoson (2003)

RACSAM

We prove here that the Poincaré-Sobolev pointwise inequalities for the relative rearrangement can be considered as the root of a great number of inequalities in various sets not necessarily vector spaces. In particular, new interpolation inequalities can be derived.

Currently displaying 81 – 100 of 114