Quadratic-quartic functional equations in RN-spaces.
We study the stability of homomorphisms between topological (abelian) groups. Inspired by the "singular" case in the stability of Cauchy's equation and the technique of quasi-linear maps we introduce quasi-homomorphisms between topological groups, that is, maps ω: 𝒢 → ℋ such that ω(0) = 0 and ω(x+y) - ω(x) - ω(y) → 0 (in ℋ) as x,y → 0 in 𝒢. The basic question here is whether ω is approximable by a true homomorphism a in the sense that ω(x)-a(x) → 0 in ℋ as x →...