Partitioned cyclic functional equations.
The goal of the present paper is to establish some new results on the existence, uniqueness and stability of periodic solutions for a class of third order functional differential equations with state and time-varying delays. By Krasnoselskii's fixed point theorem, we prove the existence of periodic solutions and under certain sufficient conditions, the Banach contraction principle ensures the uniqueness of this solution. The results obtained in this paper are illustrated by an example.
In this paper, we offer a new stability concept, practical Ulam-Hyers-Rassias stability, for nonlinear equations in Banach spaces, which consists in a restriction of Ulam-Hyers-Rassias stability to bounded subsets. We derive some interesting sufficient conditions on practical Ulam-Hyers-Rassias stability from a nonlinear functional analysis point of view. Our method is based on solving nonlinear equations via homotopy method together with Bihari inequality result. Then we consider nonlinear equations...