Eberlein integral and polynomial interpolation
We propose two new algorithms to improve greedy sampling of high-dimensional functions. While the techniques have a substantial degree of generality, we frame the discussion in the context of methods for empirical interpolation and the development of reduced basis techniques for high-dimensional parametrized functions. The first algorithm, based on a saturation assumption of the error in the greedy algorithm, is shown to result in a significant reduction of the workload over the standard greedy...
We are given data α₁,..., αₘ and a set of points E = x₁,...,xₘ. We address the question of conditions ensuring the existence of a function f satisfying the interpolation conditions , i = 1,...,m, that is also n-convex on a set properly containing E. We consider both one-point extensions of E, and extensions to all of ℝ. We also determine bounds on the n-convex functions satisfying the above interpolation conditions.
We suggest a modification of the Pawłucki and Pleśniak method to construct a continuous linear extension operator by means of interpolation polynomials. As an illustration we present explicitly the extension operator for the space of Whitney functions given on the Cantor ternary set.