Displaying 41 – 60 of 87

Showing per page

Open problems in constructive function theory.

Baratchart, L., Martínez-Finkelshtein, A., Jimenez, D., Lubinsky, D.S., Mhaskar, H.N., Pritsker, I., Putinar, M., Stylianopoulos, N., Totik, V., Varju, P., Xu, Y. (2006)

ETNA. Electronic Transactions on Numerical Analysis [electronic only]

Rational interpolants with preassigned poles, theoretical aspects

Amiran Ambroladze, Hans Wallin (1999)

Studia Mathematica

Let ⨍ be an analytic function on a compact subset K of the complex plane ℂ, and let r n ( z ) denote the rational function of degree n with poles at the points b n i i = 1 n and interpolating ⨍ at the points a n i i = 0 n . We investigate how these points should be chosen to guarantee the convergence of r n to ⨍ as n → ∞ for all functions ⨍ analytic on K. When K has no “holes” (see [8] and [3]), it is possible to choose the poles b n i i , n without limit points on K. In this paper we study the case of general compact sets K, when such a separation...

Currently displaying 41 – 60 of 87