Fast multilevel evaluation of smooth radial basis function expansions.
This paper deals with the possibility of using a feedforward neural network to test the discrepancies between a real astronomical image and a predefined template. This task can be accomplished thanks to the capability of neural networks to solve a nonlinear approximation problem, i.e. to construct an hypersurface that approximates a given set of scattered data couples. Images are encoded associating each of them with some conveniently chosen statistical moments, evaluated along the axes; in this...