Page 1

Displaying 1 – 12 of 12

Showing per page

A Dichotomy Principle for Universal Series

V. Farmaki, V. Nestoridis (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Applying results of the infinitary Ramsey theory, namely the dichotomy principle of Galvin-Prikry, we show that for every sequence ( α j ) j = 1 of scalars, there exists a subsequence ( α k j ) j = 1 such that either every subsequence of ( α k j ) j = 1 defines a universal series, or no subsequence of ( α k j ) j = 1 defines a universal series. In particular examples we decide which of the two cases holds.

A function related to a Lagrange-Bürmann series

Paul Bracken (2002)

Czechoslovak Mathematical Journal

An infinite series which arises in certain applications of the Lagrange-Bürmann formula to exponential functions is investigated. Several very exact estimates for the Laplace transform and higher moments of this function are developed.

Approximation by p -Faber-Laurent rational functions in the weighted Lebesgue spaces

Daniyal M. Israfilov (2004)

Czechoslovak Mathematical Journal

Let L C be a regular Jordan curve. In this work, the approximation properties of the p -Faber-Laurent rational series expansions in the ω weighted Lebesgue spaces L p ( L , ω ) are studied. Under some restrictive conditions upon the weight functions the degree of this approximation by a k th integral modulus of continuity in L p ( L , ω ) spaces is estimated.

Currently displaying 1 – 12 of 12

Page 1