Damping oscillatory integrals with polynomial phase.
We present a survey of mixed norm inequalities for several directional operators, namely, directional Hardy-Littlewood maximal functions and Hilbert transforms (both appearing in the method of rotations of Calderón and Zygmund), X-ray transforms, and directional fractional operators related to Riesz type potentials with variable kernel. In dimensions higher than two several interesting questions remain unanswered.[Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential...
We study the spaces of Lorentz-Zygmund multipliers on compact abelian groups and show that many of these spaces are distinct. This generalizes earlier work on the non-equality of spaces of Lorentz multipliers.
For different reasons it is very useful to have at one’s disposal a duality formula for the fractional powers of the Laplacean, namely, , α ∈ ℂ, for ϕ belonging to a suitable function space and u to its topological dual. Unfortunately, this formula makes no sense in the classical spaces of distributions. For this reason we introduce a new space of distributions where the above formula can be established. Finally, we apply this distributional point of view on the fractional powers of the Laplacean...
Let u be a solution to a second order elliptic equation with singular magnetic fields, vanishing continuously on an open subset Γ of the boundary of a Lipschitz domain. An elementary proof of the doubling property for u² over balls centered at some points near Γ is presented. Moreover, we get the unique continuation at the boundary of Dini domains for elliptic operators.