Balls and Quasi-Metrics: A Space of Homogenous Type Modeling the Real Analysis Related to the Monge-Ampère Equation.
Let MX,w(ℝ) denote the algebra of the Fourier multipliers on a separable weighted Banach function space X(ℝ,w).We prove that if the Cauchy singular integral operator S is bounded on X(ℝ, w), thenMX,w(ℝ) is continuously embedded into L∞(ℝ). An important consequence of the continuous embedding MX,w(ℝ) ⊂ L∞(ℝ) is that MX,w(ℝ) is a Banach algebra.
Se construyen dos bases incondicionales de L2(R) adaptadas al estudio de la integral de Cauchy sobre una curva cuerda-arco, y se extiende la construcción a L2(Rd). Esto permite obtener una prueba simple del "Teorema T(b)" de G. David, J.L. Journé u S. Semmes. Se define un espacio de Hardy ponderado Hb1(Rd) caracterizado por las bases anteriores. Finalmente se aplican estos métodos al estudio del potencial de doble capa sobre una superficie lipschitziana.
We introduce a type of -dimensional bilinear fractional Hardy-type operators with rough kernels and prove the boundedness of these operators and their commutators on central Morrey spaces with variable exponents. Furthermore, the similar definitions and results of multilinear fractional Hardy-type operators with rough kernels are obtained.
We study a multilinear oscillatory integral with rough kernel and establish a boundedness criterion.
The purpose of this article is to obtain a multidimensional extension of Lacey and Thiele's result on the boundedness of a model sum which plays a crucial role in the boundedness of the bilinear Hilbert transform in one dimension. This proof is a simplification of the original proof of Lacey and Thiele modeled after the presentation of Bilyk and Grafakos.