Balls and Quasi-Metrics: A Space of Homogenous Type Modeling the Real Analysis Related to the Monge-Ampère Equation.
Let MX,w(ℝ) denote the algebra of the Fourier multipliers on a separable weighted Banach function space X(ℝ,w).We prove that if the Cauchy singular integral operator S is bounded on X(ℝ, w), thenMX,w(ℝ) is continuously embedded into L∞(ℝ). An important consequence of the continuous embedding MX,w(ℝ) ⊂ L∞(ℝ) is that MX,w(ℝ) is a Banach algebra.
Se construyen dos bases incondicionales de L2(R) adaptadas al estudio de la integral de Cauchy sobre una curva cuerda-arco, y se extiende la construcción a L2(Rd). Esto permite obtener una prueba simple del "Teorema T(b)" de G. David, J.L. Journé u S. Semmes. Se define un espacio de Hardy ponderado Hb1(Rd) caracterizado por las bases anteriores. Finalmente se aplican estos métodos al estudio del potencial de doble capa sobre una superficie lipschitziana.
We study a multilinear oscillatory integral with rough kernel and establish a boundedness criterion.
The purpose of this article is to obtain a multidimensional extension of Lacey and Thiele's result on the boundedness of a model sum which plays a crucial role in the boundedness of the bilinear Hilbert transform in one dimension. This proof is a simplification of the original proof of Lacey and Thiele modeled after the presentation of Bilyk and Grafakos.