, bmo, blo and Littlewood-Paley -functions with non-doubling measures.
Let A = -Δ + V be a Schrödinger operator on , d ≥ 3, where V is a nonnegative potential satisfying the reverse Hölder inequality with an exponent q > d/2. We say that f is an element of if the maximal function belongs to , where is the semigroup generated by -A. It is proved that for d/(d+1) < p ≤ 1 the space admits a special atomic decomposition.
Let Ω ⊂ Rn be a strongly Lipschitz domain. In this article, the authors study Hardy spaces, Hpr (Ω)and Hpz (Ω), and Hardy-Sobolev spaces, H1,pr (Ω) and H1,pz,0 (Ω) on , for p ∈ ( n/n+1, 1]. The authors establish grand maximal function characterizations of these spaces. As applications, the authors obtain some div-curl lemmas in these settings and, when is a bounded Lipschitz domain, the authors prove that the divergence equation div u = f for f ∈ Hpz (Ω) is solvable in H1,pz,0 (Ω) with suitable...
Our concern in this paper is to describe a class of Hardy spaces Hp(D) for 1 ≤ p < 2 on a Lipschitz domain D ⊂ Rn when n ≥ 3, and a certain smooth counterpart of Hp(D) on Rn-1, by providing an atomic decomposition and a description of their duals.
This subject has several natural points of view, but we shall start with the one that corresponds to the following question: Is there something like Littlewood-Paley theory which is useful for analyzing the geometry of subsets of Rn, in much the same way that traditional Littlewood-Paley theory is good for analyzing functions and operators?
We establish new results on the space BV of functions with bounded variation. While it is well known that this space admits no unconditional basis, we show that it is almost characterized by wavelet expansions in the following sense: if a function f is in BV, its coefficient sequence in a BV normalized wavelet basis satisfies a class of weak-l1 type estimates. These weak estimates can be employed to prove many interesting results. We use them to identify the interpolation spaces between BV and Sobolev...
In this paper, several sufficient conditions for boundedness of the Hilbert transform between two weighted Lp-spaces are obtained. Invariant A∞ weights are obtained. Several characterizations of invariant A∞ weights are given. We also obtain some sufficient conditions for products of two Toeplitz operators of Hankel operators to be bounded on the Hardy space of the unit circle using Orlicz spaces and Lorentz spaces.