Embedding relations between local Hardy and modulation spaces
A sharp embedding relation between local Hardy spaces and modulation spaces is given.
A sharp embedding relation between local Hardy spaces and modulation spaces is given.
The present paper is devoted to the study of the “quality” of the compactness of the trace operator. More precisely, we characterize the asymptotic behaviour of entropy numbers of the compact map , where Γ is a d-set with 0 < d < n and a weight of type near Γ with ϰ > -(n-d). There are parallel results for approximation numbers.
Recently, the weak Triebel-Lizorkin space was introduced by Grafakos and He, which includes the standard Triebel-Lizorkin space as a subset. The latter has a wide applications in aspects of analysis. In this paper, the authors firstly give equivalent quasi-norms of weak Triebel-Lizorkin spaces in terms of Peetre's maximal functions. As an application of those equivalent quasi-norms, an atomic decomposition of weak Triebel-Lizorkin spaces is given.
We consider generalized square function norms of holomorphic functions with values in a Banach space. One of the main results is a characterization of embeddings of the form , in terms of the type p and cotype q of the Banach space X. As an application we prove -estimates for vector-valued Littlewood-Paley-Stein g-functions and derive an embedding result for real and complex interpolation spaces under type and cotype conditions.