The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider harmonic Bergman-Besov spaces and weighted Bloch spaces on the unit ball of for the full ranges of parameters , , and determine the precise inclusion relations among them. To verify these relations we use Carleson measures and suitable radial differential operators. For harmonic Bergman spaces various characterizations of Carleson measures are known. For weighted Bloch spaces we provide a characterization when .
On a metric measure space (X,ϱ,μ), consider the weight functions
if ϱ(x,z₀) < 1,
if ϱ(x,z₀) ≥ 1,
if ϱ(x,z₀) < 1,
if ϱ(x,z₀) ≥ 1,
where z₀ is a given point of X, and let be an operator kernel satisfying
for all x,y ∈ X such that ϱ(x,y) < 1,
for all x,y ∈ X such that ϱ(x,y)≥ 1,
where 0 < a < min(d,D), and d and D are respectively the local and global volume growth rate of the space X. We determine conditions on a, α₀, α₁, β₀, β₁ ∈ ℝ for the Hardy-Littlewood-Sobolev operator...
Le but de cet article est d’étendre les résultats classiques (inégalité de Hardy-Littlewood-Sobolev, inégalité de Hedberg) sur l’intégrale fractionnaire à deux types différents d’espaces métriques mesurés : les espaces métriques mesurés à mesure doublante d’une part, les espaces métriques mesurés à croissance polynomiale du volume d’autre part. Les deux résultats principaux que nous obtenons sont les suivants :Etant donné un espace métrique mesuré de type homogène, étant donnés tels que , ,...
In the setting of spaces of homogeneous-type, we define the Integral, , and Derivative, , operators of order , where is a function of positive lower type and upper type less than , and show that and are bounded from Lipschitz spaces to and respectively, with suitable restrictions on the quasi-increasing function in each case. We also prove that and are bounded from the generalized Besov , with , and Triebel-Lizorkin spaces , with , of order to those of order and respectively,...
Let be a Schrödinger operator on with and satisfying . Assume that is a function such that is an Orlicz function, (the class of uniformly Muckenhoupt weights). Let be an -harmonic function on with , where and are positive constants. In this article, the author proves that the mapping is an isomorphism from the Musielak-Orlicz-Hardy space associated with , , to the Musielak-Orlicz-Hardy space under some assumptions on . As applications, the author further obtains the...
Currently displaying 1 –
5 of
5