Page 1

Displaying 1 – 5 of 5

Showing per page

Inclusion relations between harmonic Bergman-Besov and weighted Bloch spaces on the unit ball

Ömer Faruk Doğan, Adem Ersin Üreyen (2019)

Czechoslovak Mathematical Journal

We consider harmonic Bergman-Besov spaces b α p and weighted Bloch spaces b α on the unit ball of n for the full ranges of parameters 0 < p < , α , and determine the precise inclusion relations among them. To verify these relations we use Carleson measures and suitable radial differential operators. For harmonic Bergman spaces various characterizations of Carleson measures are known. For weighted Bloch spaces we provide a characterization when α > 0 .

Inégalités à poids pour l'opérateur de Hardy-Littlewood-Sobolev dans les espaces métriques mesurés à deux demi-dimensions

David Mascré (2006)

Colloquium Mathematicae

On a metric measure space (X,ϱ,μ), consider the weight functions w α ( x ) = ϱ ( x , z ) - α if ϱ(x,z₀) < 1, w α ( x ) = ϱ ( x , z ) - α if ϱ(x,z₀) ≥ 1, w β ( x ) = ϱ ( x , z ) - β if ϱ(x,z₀) < 1, w β ( x ) = ϱ ( x , z ) - β if ϱ(x,z₀) ≥ 1, where z₀ is a given point of X, and let κ a : X × X be an operator kernel satisfying κ a ( x , y ) c ϱ ( x , y ) a - d for all x,y ∈ X such that ϱ(x,y) < 1, κ a ( x , y ) c ϱ ( x , y ) a - D for all x,y ∈ X such that ϱ(x,y)≥ 1, where 0 < a < min(d,D), and d and D are respectively the local and global volume growth rate of the space X. We determine conditions on a, α₀, α₁, β₀, β₁ ∈ ℝ for the Hardy-Littlewood-Sobolev operator...

Inégalités pour l’opérateur intégral fractionnaire sur différents espaces métriques mesurés

David Mascré (2011)

Annales mathématiques Blaise Pascal

Le but de cet article est d’étendre les résultats classiques (inégalité de Hardy-Littlewood-Sobolev, inégalité de Hedberg) sur l’intégrale fractionnaire à deux types différents d’espaces métriques mesurés : les espaces métriques mesurés à mesure doublante d’une part, les espaces métriques mesurés à croissance polynomiale du volume d’autre part. Les deux résultats principaux que nous obtenons sont les suivants :Etant donné ( X , ρ , μ ) un espace métrique mesuré de type homogène, étant donnés p , q , α R tels que 1 p &lt; 1 / α , 1 / q = 1 / p - α ,...

Integral and derivative operators of functional order on generalized Besov and Triebel-Lizorkin spaces in the setting of spaces of homogeneous type

Silvia I. Hartzstein, Beatriz E. Viviani (2002)

Commentationes Mathematicae Universitatis Carolinae

In the setting of spaces of homogeneous-type, we define the Integral, I φ , and Derivative, D φ , operators of order φ , where φ is a function of positive lower type and upper type less than 1 , and show that I φ and D φ are bounded from Lipschitz spaces Λ ξ to Λ ξ φ and Λ ξ / φ respectively, with suitable restrictions on the quasi-increasing function ξ in each case. We also prove that I φ and D φ are bounded from the generalized Besov B ˙ p ψ , q , with 1 p , q < , and Triebel-Lizorkin spaces F ˙ p ψ , q , with 1 < p , q < , of order ψ to those of order φ ψ and ψ / φ respectively,...

Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators

Sibei Yang (2015)

Czechoslovak Mathematical Journal

Let L : = - Δ + V be a Schrödinger operator on n with n 3 and V 0 satisfying Δ - 1 V L ( n ) . Assume that ϕ : n × [ 0 , ) [ 0 , ) is a function such that ϕ ( x , · ) is an Orlicz function, ϕ ( · , t ) 𝔸 ( n ) (the class of uniformly Muckenhoupt weights). Let w be an L -harmonic function on n with 0 < C 1 w C 2 , where C 1 and C 2 are positive constants. In this article, the author proves that the mapping H ϕ , L ( n ) f w f H ϕ ( n ) is an isomorphism from the Musielak-Orlicz-Hardy space associated with L , H ϕ , L ( n ) , to the Musielak-Orlicz-Hardy space H ϕ ( n ) under some assumptions on ϕ . As applications, the author further obtains the...

Currently displaying 1 – 5 of 5

Page 1