Sharp Logarithmic Inequalities for Two Hardy-type Operators
For any locally integrable f on ℝⁿ, we consider the operators S and T which average f over balls of radius |x| and center 0 and x, respectively: , for x ∈ ℝⁿ. The purpose of the paper is to establish sharp localized LlogL estimates for S and T. The proof rests on a corresponding one-weight estimate for a martingale maximal function, a result which is of independent interest.