The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For any locally integrable f on ℝⁿ, we consider the operators S and T which average f over balls of radius |x| and center 0 and x, respectively:
,
for x ∈ ℝⁿ. The purpose of the paper is to establish sharp localized LlogL estimates for S and T. The proof rests on a corresponding one-weight estimate for a martingale maximal function, a result which is of independent interest.
We extend a result of Coifman and Dahlberg [Singular integral characterizations of nonisotropic spaces and the F. and M. Riesz theorem, Proc. Sympos. Pure Math., Vol. 35, pp. 231–234; Amer. Math. Soc., Providence, 1979] on the characterization of spaces by singular integrals of with a nonisotropic metric. Then we apply it to produce singular integral versions of generalized BMO spaces. More precisely, if is the family of dilations in induced by a matrix with a nonnegative eigenvalue, then...
We study general continuity properties for an increasing family of Banach spaces of classes for pseudo-differential symbols, where was introduced by J.
Sjöstrand in 1993. We prove that the operators in are Schatten-von
Neumann operators of order on . We prove also that and , provided . If instead , then . By
modifying the definition of the -spaces, one also obtains symbol classes related
to the spaces.
Currently displaying 1 –
5 of
5