Global higher integrability of jacobians on bounded domains
Global maximal estimates are considered for solutions to an initial value problem for the Schrödinger equation.
We prove the global in time existence of a small solution for the 3D micropolar fluid system in critical Fourier-Herz spaces by using the Fourier localization method and Littlewood-Paley theory.
We prove the global well-posedness of the 2-D Boussinesq system with temperature dependent thermal diffusivity and zero viscosity coefficient.
For a wavelet ψ of compact support, we define a square function and a maximal function NΛ. We then obtain the equivalence of these functions for 0 < p < ∞. We show this equivalence by using good-λ inequalities.