Page 1

Displaying 1 – 3 of 3

Showing per page

Closure of dilates of shift-invariant subspaces

Moisés Soto-Bajo (2013)

Open Mathematics

Let V be any shift-invariant subspace of square summable functions. We prove that if for some A expansive dilation V is A-refinable, then the completeness property is equivalent to several conditions on the local behaviour at the origin of the spectral function of V, among them the origin is a point of A*-approximate continuity of the spectral function if we assume this value to be one. We present our results also in a more general setting of A-reducing spaces. We also prove that the origin is a...

Completeness in L1(R) of discrete translates.

Joaquim Bruna, Alexander Olevskii, Alexander Ulanovskii (2006)

Revista Matemática Iberoamericana

We characterize, in terms of the Beurling-Malliavin density, the discrete spectra Λ ⊂ R for which a generator exists, that is a function φ ∈ L1(R) such that its Λ translates φ(x - λ), λ ∈ Λ, span L1(R). It is shown that these spectra coincide with the uniqueness sets for certain analytic clases. We also present examples of discrete spectra Λ ∈ R which do not admit a single generator while they admit a pair of generators.

Currently displaying 1 – 3 of 3

Page 1