O aproximací obrazu v Hilbertově transformací ortogonálními řadami racionálních lomených funkcí
Solutions to singular linear ordinary differential equations with analytic coefficients are found in the form of Laplace type integrals.
We construct a testing function space, which is equipped with the topology that is generated by Lν,p - multinorm of the differential operatorAx = x2 - x d/dx [x d/dx],and its k-th iterates Akx, where k = 0, 1, ... , and A0xφ = φ. Comparing with other testing-function spaces, we introduce in its dual the Kontorovich-Lebedev transformation for distributions with respect to a complex index. The existence, uniqueness, imbedding and inversion properties are investigated. As an application we find a solution...
We characterize the existence of the solutions of the truncated moments problem in several real variables on unbounded supports by the existence of the maximum of certain concave Lagrangian functions. A natural regularity assumption on the support is required.