Das Wachstumsverhalten ganzer Funktionen unter Voraussetzungen über ihre Laplace-Transformierte.
We present a survey of mixed norm inequalities for several directional operators, namely, directional Hardy-Littlewood maximal functions and Hilbert transforms (both appearing in the method of rotations of Calderón and Zygmund), X-ray transforms, and directional fractional operators related to Riesz type potentials with variable kernel. In dimensions higher than two several interesting questions remain unanswered.[Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential...
In the paper discrete limit theorems in the sense of weak convergence of probability measures on the complex plane as well as in the space of analytic functions for the Laplace transform of the Riemann zeta-function are proved.
For different reasons it is very useful to have at one’s disposal a duality formula for the fractional powers of the Laplacean, namely, , α ∈ ℂ, for ϕ belonging to a suitable function space and u to its topological dual. Unfortunately, this formula makes no sense in the classical spaces of distributions. For this reason we introduce a new space of distributions where the above formula can be established. Finally, we apply this distributional point of view on the fractional powers of the Laplacean...
We provide several general versions of Littlewood's Tauberian theorem. These versions are applicable to Laplace transforms of Schwartz distributions. We employ two types of Tauberian hypotheses; the first kind involves distributional boundedness, while the second type imposes a one-sided assumption on the Cesàro behavior of the distribution. We apply these Tauberian results to deduce a number of Tauberian theorems for power series and Stieltjes integrals where Cesàro summability follows from Abel...