Tauberian and Abelian theorems for rapidly decaying distributions and their applications to stable laws.
Let X be a Banach space and be absolutely regular (i.e. integrable when divided by some polynomial). If the distributional Fourier transform of f is locally integrable then f converges to 0 at infinity in some sense to be made precise. From this result we deduce some Tauberian theorems for Fourier and Laplace transforms, which can be improved if the underlying Banach space has the analytic Radon-Nikodym property.
We consider the space of ultradifferentiable functions with compact supports and the space of polynomials on . A description of the space of polynomial ultradistributions as a locally convex direct sum is given.
A function is said to have the -th Laplace derivative on the right at if is continuous in a right neighborhood of and there exist real numbers such that converges as for some . There is a corresponding definition on the left. The function is said to have the -th Laplace derivative at when these two are equal, the common value is denoted by . In this work we establish the basic properties of this new derivative and show that, by an example, it is more general than the generalized...
In the literature a Boehmian space containing all right-sided Laplace transformable distributions is defined and studied. Besides obtaining basic properties of this Laplace transform, an inversion formula is also obtained. In this paper we shall improve upon two theorems one of which relates to the continuity of this Laplace transform and the other is concerned with the inversion formula.