Displaying 201 – 220 of 324

Showing per page

On Some Generalizations of Classical Integral Transforms

Virchenko, Nina (2012)

Mathematica Balkanica New Series

MSC 2010: 44A15, 44A20, 33C60Using the generalized confluent hypergeometric function [6] some new integral transforms are introduced. They are generalizations of some classical integral transforms, such as the Laplace, Stieltjes, Widder-potential, Glasser etc. integral transforms. The basic properties of these generalized integral transforms and their inversion formulas are obtained. Some examples are also given.

On some singular integral operatorsclose to the Hilbert transform

T. Godoy, L. Saal, M. Urciuolo (1997)

Colloquium Mathematicae

Let m: ℝ → ℝ be a function of bounded variation. We prove the L p ( ) -boundedness, 1 < p < ∞, of the one-dimensional integral operator defined by T m f ( x ) = p . v . k ( x - y ) m ( x + y ) f ( y ) d y where k ( x ) = j 2 j φ j ( 2 j x ) for a family of functions φ j j satisfying conditions (1.1)-(1.3) given below.

On the Generalized Associated Legendre Functions

Virchenko, Nina, Rumiantseva, Olena (2008)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 33C60, 33C20, 44A15This paper is devoted to an important case of Wright’s hypergeometric function 2Fτ,β1(a, b; c; z) = 2Fτ,β1(z), to studying its basic properties and to application of 2Fτ,β1(z) to the generalization of the associated Legendre functions.

Currently displaying 201 – 220 of 324