On certain theorems in transform calculus.
Mathematics Subject Classification: Primary 33E20, 44A10; Secondary 33C10, 33C20, 44A20By using integral representations for several Mathieu type series, a number of integral transforms of Hankel type are derived here for general families of Mathieu type series. These results generalize the corresponding ones on the Fourier transforms of Mathieu type series, obtained recently by Elezovic et al. [4], Tomovski [19] and Tomovski and Vu Kim Tuan [20].
MSC 2010: 44A15, 44A20, 33C60Using the generalized confluent hypergeometric function [6] some new integral transforms are introduced. They are generalizations of some classical integral transforms, such as the Laplace, Stieltjes, Widder-potential, Glasser etc. integral transforms. The basic properties of these generalized integral transforms and their inversion formulas are obtained. Some examples are also given.
In this article we study the weak type Hardy space of harmonic functions in the upper half plane and we prove the -integrability of singular integral transforms defined by Calderón-Zygmund kernels. This generalizes the corresponding result for Riesz transforms proved by Alexandrov.
We define various operations on the space of ultra Boehmians like multiplication with certain analytic functions which are Fourier transforms of compactly supported distributions, polynomials, and characters , translation, differentiation. We also prove that the Fourier transform on the space of ultra Boehmians has all the operational properties as in the classical theory.