An uniform boundedness for Bochner-Riesz operators related to the Hankel transform.
We prove an x-ray estimate in general dimension which is a stronger version of Wolff's Kakeya estimate [12]. This generalizes the estimate in [13], which dealt with the n = 3 case.
Se exponen las estimaciones numéricas preliminares de las singularidades de una ecuación diferencial fraccionaria no lineal. Dicha ecuación aparece en el estudio de las ondas viajeras asociadas a una ecuación de ondas que es una interpolación entre la ecuación de ondas clásica y la ecuación de Benjamin-Ono.
Let ϰ be a positive, continuous, submultiplicative function on such that for some ω ∈ ℝ, α ∈ and . For every λ ∈ (ω,∞) let for . Let be the space of functions Lebesgue integrable on with weight , and let E be a Banach space. Consider the map . Theorem 5.1 of the present paper characterizes the range of the linear map defined on , generalizing a result established by B. Hennig and F. Neubrander for . If ϰ ≡ 1 and E =ℝ then Theorem 5.1 reduces to D. V. Widder’s characterization...