Nonlinear Volterra integral equations in Henstock integrability setting.
This paper presents an approximate method of solving the fractional (in the time variable) equation which describes the processes lying between heat and wave behavior. The approximation consists in the application of a finite subspace of an infinite basis in the time variable (Galerkin method) and discretization in space variables. In the final step, a large-scale system of linear equations with a non-symmetric matrix is solved with the use of the iterative GMRES method.
Mathematics Subject Classification 2010: 45DB05, 45E05, 78A45.We give a procedure to reduce a hypersingular integral equation, arising in 2d diffraction problems on cracks in elastic media, to a Fredholm integral equation of the second kind, to which it is easier and more effectively to apply numerical methods than to the initial hypersingular equation.
We consider a class of Volterra-type integral equations in a Hilbert space. The operators of the equation considered appear as time-dependent functions with values in the space of linear continuous operators mapping the Hilbert space into its dual. We are looking for maximal values of cost functionals with respect to the admissible set of operators. The existence of a solution in the continuous and the discretized form is verified. The convergence analysis is performed. The results are applied to...
We prove the existence of solutions of some boundary-value problems for partial differential equations of order higher than two. The general idea is similar to that in [1]. We make an essential use of the results of our paper [12].