On infinite systems of Volterra integral equations in Banach spaces
We study positive linear Volterra integro-differential equations in Banach lattices. A characterization of positive equations is given. Furthermore, an explicit spectral criterion for uniformly asymptotic stability of positive equations is presented. Finally, we deal with problems of robust stability of positive systems under structured perturbations. Some explicit stability bounds with respect to these perturbations are given.
In this paper we use the Schauder fixed point theorem and methods of integral inequalities in order to prove a result on the existence, uniqueness and parametric dependence on the coefficients of the solution processes in McShane stochastic integral equations.
Let V be the classical Volterra operator on L²(0,1), and let z be a complex number. We prove that I-zV is power bounded if and only if Re z ≥ 0 and Im z = 0, while I-zV² is power bounded if and only if z = 0. The first result yields as n → ∞, an improvement of [Py]. We also study some other related operator pencils.